GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

نویسندگان

  • B P Abbott
  • R Abbott
  • T D Abbott
  • M R Abernathy
  • F Acernese
  • K Ackley
  • C Adams
  • T Adams
  • P Addesso
  • R X Adhikari
  • V B Adya
  • C Affeldt
  • M Agathos
  • K Agatsuma
  • N Aggarwal
  • O D Aguiar
  • L Aiello
  • A Ain
  • P Ajith
  • B Allen
  • A Allocca
  • P A Altin
  • S B Anderson
  • W G Anderson
  • K Arai
  • M C Araya
  • C C Arceneaux
  • J S Areeda
  • N Arnaud
  • K G Arun
  • S Ascenzi
  • G Ashton
  • M Ast
  • S M Aston
  • P Astone
  • P Aufmuth
  • C Aulbert
  • S Babak
  • P Bacon
  • M K M Bader
  • P T Baker
  • F Baldaccini
  • G Ballardin
  • S W Ballmer
  • J C Barayoga
  • S E Barclay
  • B C Barish
  • D Barker
  • F Barone
  • B Barr
  • L Barsotti
  • M Barsuglia
  • D Barta
  • J Bartlett
  • I Bartos
  • R Bassiri
  • A Basti
  • J C Batch
  • C Baune
  • V Bavigadda
  • M Bazzan
  • M Bejger
  • A S Bell
  • B K Berger
  • G Bergmann
  • C P L Berry
  • D Bersanetti
  • A Bertolini
  • J Betzwieser
  • S Bhagwat
  • R Bhandare
  • I A Bilenko
  • G Billingsley
  • J Birch
  • R Birney
  • O Birnholtz
  • S Biscans
  • A Bisht
  • M Bitossi
  • C Biwer
  • M A Bizouard
  • J K Blackburn
  • C D Blair
  • D G Blair
  • R M Blair
  • S Bloemen
  • O Bock
  • M Boer
  • G Bogaert
  • C Bogan
  • A Bohe
  • C Bond
  • F Bondu
  • R Bonnand
  • B A Boom
  • R Bork
  • V Boschi
  • S Bose
  • Y Bouffanais
  • A Bozzi
  • C Bradaschia
  • P R Brady
  • V B Braginsky
  • M Branchesi
  • J E Brau
  • T Briant
  • A Brillet
  • M Brinkmann
  • V Brisson
  • P Brockill
  • J E Broida
  • A F Brooks
  • D A Brown
  • D D Brown
  • N M Brown
  • S Brunett
  • C C Buchanan
  • A Buikema
  • T Bulik
  • H J Bulten
  • A Buonanno
  • D Buskulic
  • C Buy
  • R L Byer
  • M Cabero
  • L Cadonati
  • G Cagnoli
  • C Cahillane
  • J Calderón Bustillo
  • T Callister
  • E Calloni
  • J B Camp
  • K C Cannon
  • J Cao
  • C D Capano
  • E Capocasa
  • F Carbognani
  • S Caride
  • J Casanueva Diaz
  • C Casentini
  • S Caudill
  • M Cavaglià
  • F Cavalier
  • R Cavalieri
  • G Cella
  • C B Cepeda
  • L Cerboni Baiardi
  • G Cerretani
  • E Cesarini
  • S J Chamberlin
  • M Chan
  • S Chao
  • P Charlton
  • E Chassande-Mottin
  • B D Cheeseboro
  • H Y Chen
  • Y Chen
  • C Cheng
  • A Chincarini
  • A Chiummo
  • H S Cho
  • M Cho
  • J H Chow
  • N Christensen
  • Q Chu
  • S Chua
  • S Chung
  • G Ciani
  • F Clara
  • J A Clark
  • F Cleva
  • E Coccia
  • P-F Cohadon
  • A Colla
  • C G Collette
  • L Cominsky
  • M Constancio
  • A Conte
  • L Conti
  • D Cook
  • T R Corbitt
  • N Cornish
  • A Corsi
  • S Cortese
  • C A Costa
  • M W Coughlin
  • S B Coughlin
  • J-P Coulon
  • S T Countryman
  • P Couvares
  • E E Cowan
  • D M Coward
  • M J Cowart
  • D C Coyne
  • R Coyne
  • K Craig
  • J D E Creighton
  • J Cripe
  • S G Crowder
  • A Cumming
  • L Cunningham
  • E Cuoco
  • T Dal Canton
  • S L Danilishin
  • S D'Antonio
  • K Danzmann
  • N S Darman
  • A Dasgupta
  • C F Da Silva Costa
  • V Dattilo
  • I Dave
  • M Davier
  • G S Davies
  • E J Daw
  • R Day
  • S De
  • D DeBra
  • G Debreczeni
  • J Degallaix
  • M De Laurentis
  • S Deléglise
  • W Del Pozzo
  • T Denker
  • T Dent
  • V Dergachev
  • R De Rosa
  • R T DeRosa
  • R DeSalvo
  • R C Devine
  • S Dhurandhar
  • M C Díaz
  • L Di Fiore
  • M Di Giovanni
  • T Di Girolamo
  • A Di Lieto
  • S Di Pace
  • I Di Palma
  • A Di Virgilio
  • V Dolique
  • F Donovan
  • K L Dooley
  • S Doravari
  • R Douglas
  • T P Downes
  • M Drago
  • R W P Drever
  • J C Driggers
  • M Ducrot
  • S E Dwyer
  • T B Edo
  • M C Edwards
  • A Effler
  • H-B Eggenstein
  • P Ehrens
  • J Eichholz
  • S S Eikenberry
  • W Engels
  • R C Essick
  • T Etzel
  • M Evans
  • T M Evans
  • R Everett
  • M Factourovich
  • V Fafone
  • H Fair
  • S Fairhurst
  • X Fan
  • Q Fang
  • S Farinon
  • B Farr
  • W M Farr
  • M Favata
  • M Fays
  • H Fehrmann
  • M M Fejer
  • E Fenyvesi
  • I Ferrante
  • E C Ferreira
  • F Ferrini
  • F Fidecaro
  • I Fiori
  • D Fiorucci
  • R P Fisher
  • R Flaminio
  • M Fletcher
  • H Fong
  • J-D Fournier
  • S Frasca
  • F Frasconi
  • Z Frei
  • A Freise
  • R Frey
  • V Frey
  • P Fritschel
  • V V Frolov
  • P Fulda
  • M Fyffe
  • H A G Gabbard
  • J R Gair
  • L Gammaitoni
  • S G Gaonkar
  • F Garufi
  • G Gaur
  • N Gehrels
  • G Gemme
  • P Geng
  • E Genin
  • A Gennai
  • J George
  • L Gergely
  • V Germain
  • Abhirup Ghosh
  • Archisman Ghosh
  • S Ghosh
  • J A Giaime
  • K D Giardina
  • A Giazotto
  • K Gill
  • A Glaefke
  • E Goetz
  • R Goetz
  • L Gondan
  • G González
  • J M Gonzalez Castro
  • A Gopakumar
  • N A Gordon
  • M L Gorodetsky
  • S E Gossan
  • M Gosselin
  • R Gouaty
  • A Grado
  • C Graef
  • P B Graff
  • M Granata
  • A Grant
  • S Gras
  • C Gray
  • G Greco
  • A C Green
  • P Groot
  • H Grote
  • S Grunewald
  • G M Guidi
  • X Guo
  • A Gupta
  • M K Gupta
  • K E Gushwa
  • E K Gustafson
  • R Gustafson
  • J J Hacker
  • B R Hall
  • E D Hall
  • H Hamilton
  • G Hammond
  • M Haney
  • M M Hanke
  • J Hanks
  • C Hanna
  • M D Hannam
  • J Hanson
  • T Hardwick
  • J Harms
  • G M Harry
  • I W Harry
  • M J Hart
  • M T Hartman
  • C-J Haster
  • K Haughian
  • J Healy
  • A Heidmann
  • M C Heintze
  • H Heitmann
  • P Hello
  • G Hemming
  • M Hendry
  • I S Heng
  • J Hennig
  • J Henry
  • A W Heptonstall
  • M Heurs
  • S Hild
  • D Hoak
  • D Hofman
  • K Holt
  • D E Holz
  • P Hopkins
  • J Hough
  • E A Houston
  • E J Howell
  • Y M Hu
  • S Huang
  • E A Huerta
  • D Huet
  • B Hughey
  • S Husa
  • S H Huttner
  • T Huynh-Dinh
  • N Indik
  • D R Ingram
  • R Inta
  • H N Isa
  • J-M Isac
  • M Isi
  • T Isogai
  • B R Iyer
  • K Izumi
  • T Jacqmin
  • H Jang
  • K Jani
  • P Jaranowski
  • S Jawahar
  • L Jian
  • F Jiménez-Forteza
  • W W Johnson
  • N K Johnson-McDaniel
  • D I Jones
  • R Jones
  • R J G Jonker
  • L Ju
  • Haris K
  • C V Kalaghatgi
  • V Kalogera
  • S Kandhasamy
  • G Kang
  • J B Kanner
  • S J Kapadia
  • S Karki
  • K S Karvinen
  • M Kasprzack
  • E Katsavounidis
  • W Katzman
  • S Kaufer
  • T Kaur
  • K Kawabe
  • F Kéfélian
  • M S Kehl
  • D Keitel
  • D B Kelley
  • W Kells
  • R Kennedy
  • J S Key
  • F Y Khalili
  • I Khan
  • S Khan
  • Z Khan
  • E A Khazanov
  • N Kijbunchoo
  • Chi-Woong Kim
  • Chunglee Kim
  • J Kim
  • K Kim
  • N Kim
  • W Kim
  • Y-M Kim
  • S J Kimbrell
  • E J King
  • P J King
  • J S Kissel
  • B Klein
  • L Kleybolte
  • S Klimenko
  • S M Koehlenbeck
  • S Koley
  • V Kondrashov
  • A Kontos
  • M Korobko
  • W Z Korth
  • I Kowalska
  • D B Kozak
  • V Kringel
  • B Krishnan
  • A Królak
  • C Krueger
  • G Kuehn
  • P Kumar
  • R Kumar
  • L Kuo
  • A Kutynia
  • B D Lackey
  • M Landry
  • J Lange
  • B Lantz
  • P D Lasky
  • M Laxen
  • A Lazzarini
  • C Lazzaro
  • P Leaci
  • S Leavey
  • E O Lebigot
  • C H Lee
  • H K Lee
  • H M Lee
  • K Lee
  • A Lenon
  • M Leonardi
  • J R Leong
  • N Leroy
  • N Letendre
  • Y Levin
  • J B Lewis
چکیده

We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of the first three gravitational-wave observations through isolated binary evolution

During its first four months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. Here we use the rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel-classical is...

متن کامل

GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence

On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of13. This system is the lightest black hole binary so far observed, with component masses of +  M 12 2 7 and +  M 7 2 2 (90% credible intervals)....

متن کامل

Gravitational Waves from Supermassive Black Hole Coalescence in a Hierarchical Galaxy Formation Model

We investigate the expected gravitational wave emission from coalescing supermassive black hole (SMBH) binaries resulting from mergers of their host galaxies. When galaxies merge, the SMBHs in the host galaxies sink to the center of the new merged galaxy and form a binary system. We employ a semi-analytic model of galaxy and quasar formation based on the hierarchical clustering scenario to esti...

متن کامل

Gravitational Waves from Coalescing Black Hole Macho Binaries

If MACHOs are black holes of mass ∼0.5 M,, they must have been formed in the early universe when the temperature was ∼1 GeV. We estimate that in this case in our Galaxy’s halo out to ∼ 50 kpc there exist ∼5 # black hole binaries the coalescence times of which are comparable to the age of the universe, so that the 8 10 coalescence rate will be ∼ events yr per galaxy. This suggests that we can ex...

متن کامل

Exploring binary-neutron-star-merger scenario of short-gamma-ray bursts by gravitational-wave observation.

We elucidate the feature of gravitational waves (GWs) from a binary-neutron-star merger collapsing to a black hole by general relativistic simulation. We show that GW spectrum imprints the coalescence dynamics, formation process of disk, equation of state for neutron stars, total masses, and mass ratio. A formation mechanism of the central engine of short-gamma-ray bursts, which are likely to b...

متن کامل

Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226

The gravitational wave observations GW150914 and GW151226 by Advanced LIGO provide the first opportunity to learn about physics in the extreme gravity environment of coalescing binary black holes. The LIGO Scientific Collaboration and the Virgo Collaboration have verified that this observation is consistent with Einstein’s theory of General Relativity, constraining the presence of certain param...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 116 24  شماره 

صفحات  -

تاریخ انتشار 2016